欢迎来到论文网! 加入收藏 | 设为论文网 | 网站地图 | Tags标签 | RSS
论文网 论文网8200余万篇毕业论文、各种论文格式和论文范文以及9千多种期刊杂志的论文征稿及论文投稿信息,是论文写作、论文投稿和论文发表的论文参考网站,也是科研人员论文检测和发表论文的理想平台,lunwenf@yeah.net。
您当前的位置:论文网 > 科技论文 > 数学建模论文

谈谈数学建模对社会的推动作用

时间:2016-04-13  作者:王 蕊

本文介绍数学建模的定义,在当今社会的地位以及在各领域的广泛应用,再进一步说明数学建模对培养人才的重要作用.进而说明它对社会的推动作用.
论文关键词:数学建模,人才培养,社会推动作用
  1 数学建模的简介
  随着数学建模在各个领域的应用越来越广泛以及社会对数学建模教育的普及,越来越多的人已认识到数学建模的重要性.但并不是所有的人都了解到底什么是数学建模,而它又是怎么产生的.今天我们就简单的介绍一下数学建模.
  1.1 数学建模的概念
  数学建模(Mathematical Modelling)把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模.]实际上就是用数学语言描述实际现象的过程.这里的实际现象既包含具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.可以说它是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓其重要且有用的特征的表示,常常形象化的或符号的表示.”数学建模专家也曾下了一个更让人容易理的定义:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律’建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.”简而言之,就是建立数学模型来解决各种实际问题的过程.
  1.2 数学建模产生的背景
  随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大,不但运用于自然科学各个领域,各学科,而且渗透到经济,军事,管理以至于社会科学和社会活动的各个领域.但是,社会对数学的需求并不只是需要在各部门中从事实际工作的人善于运用数学知识及数学大思维放法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就象在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的,你所能遇到的都是数学和其他东西混杂在一起的问题.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的问题进行分析,发现其中的可用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模.[2]
  2 数学建模在社会中的实际应用
  也许你会说数学都是很抽象的东西,数学建模更是看不到,摸不着,离我们的生活很遥远,但其实数学和数学建模就在你身边.数学建模作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关的.
  2.1 与实际生活密切相关
  当你准备分期贷款购买一所新居时,面对五花八门的还款方式(期限、利率不同,按月或按年偿还,哪一种最有利.用一点不太深的数学就能准确地回答你的问题.
  你注意过录象机计数器数字的跳动吗.这里有什么规律吗.你找到规律,就可以根据计数器的读数算出录象带已经走过了多长时间,也就知道未转过的那段带子能否录下一定时间的一个节目.
  你的照片不是反映你容貌的模型吗,地图不是用特定的符号表示山川、道路的模型吗.数学模型当然更抽象些,它是由数字、字母和数学符号组成的、描述研究对象数量规律的公式、图表或者程序.解决分期贷款和计数器读数那两个问题,就要建立数学模型.
  一般地说,当人们设计产品参数、规划交通网络、制定生产计划、控制工艺过程、预报经济增长、确定投资方案时,都需要将研究对象的内在规律用数学的语言和方法表述出来,并将求解得到的数量结果返回到实际对象的问题中去,这种解决问题的全过程就称为建立数学模型,简称数学建模.在决策科学化、定量化呼声日渐高涨的今天,数学建模几乎是无处不在的.[3]
  2.2 能解决很多实际问题
  数学建模的重要性在于它是解决实际问题的桥梁,通过这种手段解决实际问题可以获得更高的经济效益和社会效益,为人类的进步和繁荣做出巨大贡献.下面我们列举一些应用数学建模解决实际问题的实例:
  (1)如何救森林失火才能最大限度地减小损失
  (2)如何使发电厂的水污染最小
  (3)汽车减震器的建模
  (4)自由竟争的市场供求模型
  (5)国民收入的稳定问题
  (6)军备竞赛模型
  (7)机械零件的可靠性设计
  (8)企业生产管理问题的动态规划模型
  (9)风险决策问题
  (10)人口的预测和控制模型
  (11)不破坏资源的持续捕鱼方案
  (12)受到液力加压的储油层中石油流动的改进.[4]
  2.3 在各领域应用广泛
  进入20世纪以来,随着数学以空前的广度和深度向一切领域渗透,以及电子计算机的出现与飞速发展,数学建模越来越受到人们的重视,可以从以下几方面来看数学建模在现实世界中的重要意义.
  2.3.1在一般工程技术领域,数学建模仍然大有用武之地.
  在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段.
  2.3.2在高新技术领域,数学建模几乎是必不可少的工具.
  无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台.国际上一位学者提出了“高技术本质上是一种数学技术”的观点.
  2.3.3数学迅速进入一些新领域,为数学建模开拓了许多新的处女地.
  随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生.一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础.在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地.马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步.展望21世纪,数

查看相关论文专题
-------------------------------------------------------------------------
加入收藏  打印本文
上一篇论文:求组合问题的不同算法比较分析
下一篇论文:返回列表
科技论文分类
科技小论文 数学建模论文
数学论文 节能减排论文
数学小论文 低碳生活论文
物理论文 建筑工程论文
网站设计论文 农业论文
图书情报 环境保护论文
计算机论文 化学论文
机电一体化论文 生物论文
网络安全论文 机械论文
水利论文 地质论文
交通论文
相关数学建模论文
最新数学建模论文
读者推荐的数学建模论文